Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Biotechnol ; 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38168993

RESUMO

The maturation of human pluripotent stem cell (hPSC)-derived neurons mimics the protracted timing of human brain development, extending over months to years for reaching adult-like function. Prolonged in vitro maturation presents a major challenge to stem cell-based applications in modeling and treating neurological disease. Therefore, we designed a high-content imaging assay based on morphological and functional readouts in hPSC-derived cortical neurons which identified multiple compounds that drive neuronal maturation including inhibitors of lysine-specific demethylase 1 and disruptor of telomerase-like 1 and activators of calcium-dependent transcription. A cocktail of four factors, GSK2879552, EPZ-5676, N-methyl-D-aspartate and Bay K 8644, collectively termed GENtoniK, triggered maturation across all parameters tested, including synaptic density, electrophysiology and transcriptomics. Maturation effects were further validated in cortical organoids, spinal motoneurons and non-neural lineages including melanocytes and pancreatic ß-cells. The effects on maturation observed across a broad range of hPSC-derived cell types indicate that some of the mechanisms controlling the timing of human maturation might be shared across lineages.

3.
bioRxiv ; 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37461485

RESUMO

The differentiation of human pluripotent stem cells (hPSCs) provides access to most cell types and tissues. However, hPSC-derived lineages capture a fetal-stage of development and methods to accelerate progression to an aged identity are limited. Understanding the factors driving cellular age and rejuvenation is also essential for efforts aimed at extending human life and health span. A prerequisite for such studies is the development of methods to score cellular age and simple readouts to assess the relative impact of various age modifying strategies. Here we established a transcriptional score (RNAge) in young versus old primary fibroblasts, frontal cortex and substantia nigra tissue. We validated the score in independent RNA-seq datasets and demonstrated a strong cell and tissue specificity. In fibroblasts we observed a reset of RNAge during iPSC reprogramming while direct reprogramming of aged fibroblasts to induced neurons (iN) resulted in the maintenance of both a neuronal and a fibroblast aging signature. Increased RNAge in hPSC-derived neurons was confirmed for several age-inducing strategies such as SATB1 loss, progerin expression or chemical induction of senescence (SLO). Using RNAge as a probe set, we next performed an in-silico screen using the LINCS L1000 dataset. We identified and validated several novel age-inducing and rejuvenating compounds, and we observed that RNAage captures age-related changes associated with distinct cellular hallmarks of age. Our study presents a simple tool to score age manipulations and identifies compounds that greatly expand the toolset of age-modifying strategies in hPSC derived lineages.

4.
Cell Stem Cell ; 30(3): 264-282.e9, 2023 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-36868194

RESUMO

The enteric nervous system (ENS) is derived from both the vagal and sacral component of the neural crest (NC). Here, we present the derivation of sacral ENS precursors from human PSCs via timed exposure to FGF, WNT, and GDF11, which enables posterior patterning and transition from posterior trunk to sacral NC identity, respectively. Using a SOX2::H2B-tdTomato/T::H2B-GFP dual reporter hPSC line, we demonstrate that both trunk and sacral NC emerge from a double-positive neuro-mesodermal progenitor (NMP). Vagal and sacral NC precursors yield distinct neuronal subtypes and migratory behaviors in vitro and in vivo. Remarkably, xenografting of both vagal and sacral NC lineages is required to rescue a mouse model of total aganglionosis, suggesting opportunities in the treatment of severe forms of Hirschsprung's disease.


Assuntos
Doença de Hirschsprung , Animais , Humanos , Camundongos , Proteínas Morfogenéticas Ósseas , Modelos Animais de Doenças , Fatores de Diferenciação de Crescimento , Xenoenxertos , Histonas , Crista Neural
5.
Proc Natl Acad Sci U S A ; 118(8)2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33542154

RESUMO

Cells derived from pluripotent sources in vitro must resemble those found in vivo as closely as possible at both transcriptional and functional levels in order to be a useful tool for studying diseases and developing therapeutics. Recently, differentiation of human pluripotent stem cells (hPSCs) into brain microvascular endothelial cells (ECs) with blood-brain barrier (BBB)-like properties has been reported. These cells have since been used as a robust in vitro BBB model for drug delivery and mechanistic understanding of neurological diseases. However, the precise cellular identity of these induced brain microvascular endothelial cells (iBMECs) has not been well described. Employing a comprehensive transcriptomic metaanalysis of previously published hPSC-derived cells validated by physiological assays, we demonstrate that iBMECs lack functional attributes of ECs since they are deficient in vascular lineage genes while expressing clusters of genes related to the neuroectodermal epithelial lineage (Epi-iBMEC). Overexpression of key endothelial ETS transcription factors (ETV2, ERG, and FLI1) reprograms Epi-iBMECs into authentic endothelial cells that are congruent with bona fide endothelium at both transcriptomic as well as some functional levels. This approach could eventually be used to develop a robust human BBB model in vitro that resembles the human brain EC in vivo for functional studies and drug discovery.


Assuntos
Endotélio Vascular/citologia , Células-Tronco Pluripotentes/citologia , Fatores de Transcrição/genética , Animais , Barreira Hematoencefálica , Encéfalo/irrigação sanguínea , Encéfalo/citologia , Diferenciação Celular , Linhagem Celular , Reprogramação Celular/fisiologia , Endotélio Vascular/fisiologia , Expressão Gênica , Humanos , Camundongos Endogâmicos , Células-Tronco Pluripotentes/fisiologia , Proteína Proto-Oncogênica c-fli-1/genética , Proteína Proto-Oncogênica c-fli-1/metabolismo , Análise de Célula Única , Fatores de Transcrição/metabolismo , Regulador Transcricional ERG/genética , Regulador Transcricional ERG/metabolismo
6.
Cell Rep ; 6(4): 724-36, 2014 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-24529709

RESUMO

Neural induction is the first fundamental step in nervous system formation. During development, a tightly regulated niche modulates transient extracellular signals to influence neural lineage commitment. To date, however, the cascade of molecular events that sustain these signals in humans is not well understood. Here we show that NPTX1, a secreted protein, is rapidly upregulated during neural induction from human pluripotent stem cells (hPSCs). By manipulating its expression, we were able to reduce or initiate neural lineage commitment. A time-course transcriptome analysis and functional assays show that NPTX1 acts in part by binding the Nodal receptor cofactor TDGF1, reducing both Nodal and BMP signaling. Our findings identify one of the earliest genes expressed upon neural induction and provide insight into human neural lineage specification.


Assuntos
Proteína C-Reativa/metabolismo , Linhagem da Célula , Células-Tronco Pluripotentes Induzidas/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Células-Tronco Neurais/metabolismo , Proteínas Morfogenéticas Ósseas/metabolismo , Proteína C-Reativa/genética , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteínas do Tecido Nervoso/genética , Células-Tronco Neurais/citologia , Neurogênese , Ligação Proteica , Transcriptoma , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...